

Activation energy	Energy required to start a reaction
Active site	The part of the enzyme to which the substrate binds and at which the reaction takes place
Aspartate transcarbamoylase (ATCase)	A classic example of an allosteric enzyme that catalyzes an early reaction in pyrimidine biosynthesis.
Catalysis	Process of increasing the rate of chemical reactions
Chymotrypsin	A proteolytic enzyme that preferentially hydrolyzes amide bonds adjacent to aromatic amino acid residues.
Enzymes	Biological catalysts, usually globular proteins, with self-splicing RNA as the only exception.
First order	Describe a reaction whose rate depends on the first power of the concentration of a single reactant.
Induced-fit-model	Description of substrate binding to an enzyme such that the conformation of the enzyme changes to accommodate the shape of the substrate.
Inhibitor	Substance that decreases the rate of an enzyme-catalyzed reaction.
o. Irreversible inhibition	Covalent binding of an inhibitor to an enzyme, causing permanent inactivation
1. Isozyme	Multiple forms of an enzyme that catalyze the same overall reaction but have subtle physical and kinetic parameters
Lineweaver-Burk double-reciprocal plot	Graphical method for analyzing the kinetics of enzyme-catalyzed reactions
3. Lock-and-key model	Description of the binding of a substrate to an enzyme such that the active site and the substrate exactly match each other in shape.
4. Michaelis constant	Numerical value for the strength of binding of a substrate to an enzyme; an important parameter in enzyme kinetics
5. Noncompetitive inhibition	A form of enzyme inactivation in which a substance binds to a place other than the active site so that the reaction is inhibited.
6. Ordered mechanism	An enzyme mechanism where the substrates have to bind to the enzyme in a specific order

17. Ping-pong mechanism	An enzyme mechanism where a substrate binds to the enzyme and releases a product before before the second substrate binds to the enzyme.
18. Random mechanism	An enzyme mechanism where the substrates can bind to the enzyme in any order.
19. Rate constant	Proportionality constant in the equation that describes the rate of a reaction
20. Second order	Describe a reaction whose rate depends on the product of the concentrations of two reactants
21. Standard free energy change	Difference between the energies of reactants and products under standard conditions
22. Steady state	Condition in which the concentration of an enzyme-substrate complex remains constant in spite of continuous turnover.
23. Substrate	A reactant is an enzyme-catalyzed reaction
24. Suicide substrates (Trojan horse substrates)	Molecules used to bind to an enzyme irreversibly and inactivate it
25. Transition site	Intermediate stage in a reaction in which old bonds break and new bonds are formed
26. Turnover number	Number of moles of substrate that react per mole of enzyme
27. Uncompetitive inhibition	A type of inhibition where the inhibitor can bind to ES, , but not to free E.
28. Zero order	Refers to a reaction that proceeds at a constant rate, independent of the concentration of a reactant

1. Abzymes	Antibodies that are produced against a transition-state analog and that has catalytic activity similar to that of a naturally occurring enzyme.
2. Allosteric effector	A substance- substrate, inhibitor, or activator- that binds to an allosteric enzyme and effects its activity
3. Allosteric sites	Binding sites on a target molecule for allosteric effectors
4. Apoptosis	The biochemically and biologically programmed death of a cell
5. Caspases	A family of homodimer cysteine proteases responsible for many processes
6. Coenzymes	Nonprotein substances that take part in the enzymatic reactions and are regenerated at the end of the reaction
 Concerted model 	A description of allosteric activity in which the conformations of all subunits change simultaneously.
8. Electrophile	An electron-poor substance that tends to react with centers of negative charge or polarization
9. Feedback inhibition	Process by which the final product of a series of reactions inhibits the first reaction in the series
10. General acid- base catalysis	A form of catalysis that depends on transfer of protons
11. Heterotrophic effect	Allosteric effects that occur when different substances are bound to a ptotein.
12. Homotrophic effect	Allosteric effects that occur when several identical molecules are bound to a protein
13. Inhibitor	Substance that decreases the rate of an enzyme-catalyzed reaction.
14. K0.5	The substrate level at one-half Vmax in a K system.
15. K systems	Combinations of allosteric enzymes and inhibitors or activators, in which the presence of the inhibitor/ activator changes the substrate concentration that yields one-half Vmax.
16. Labeling	Covalent modification of a specific residue on an enzyme
17. Metal-ion catalysis	(Lewis acid-base catalysis) a form of catalysis that depends on the Lewis definition of an acid as an electron-pair acceptor and a base as an electron-pair donor.
18. Negative cooperativity	A cooperative effect whereby binding of the first ligand to an enzyme or protein causes the affinity for the next ligand to be lower.

19. Nucleophile	An electron-rich substance that tends to react with sides of positive charge or polarization
20. Nucleophilic substitution reactions	Reactions in which one functional group is replaced by another as the result of a nucleophilic attack
21. Protein kinases	A class of enzymes that modify a protein by attaching a phosphate group to it
22. Sequential model	Description of the action of allosteric proteins in which a conformational change in one subunit is passed along to the other subunits.
23. Serine proteases	A class of proteolytic enzymes in which a serine hydroxyl plays an essential role in catalysis
24. SN1	Unimolecular nucleophilic substitution reaction; one of the most common types of organic reactions seen in biochemistry; the rate of the reation follows first-order kinetics
25. SN2	A Bimolecular nucleophilic substitution reaction; an important type of organic reaction seen in biochemistry; the rate of the reaction follows second-order kinetics
26. Transition- state analogs	Synthesized compounds that mimic the form of the transition state of an enzyme reaction.
27. V systems	Combinations of allosteric enzymes and inhibitors or activators which the presence of the inhibitor/ activator changes the maximal velocity of the enzyme but not the substrate level that yields one half Vmax.
28. Zymogen	An inactive protein that can be activated by specific hydrolysis of peptide bonds